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Abstract

We empirically investigate the association of new U.S. housing investment with local
sea level rise risks and the role of climate change beliefs in shaping this relationship.
The analysis combines U.S. Census data on housing construction permits with NOAA
sea level rise projections and county-level estimates of climate change beliefs (Howe
et al., 2015), along with standard controls for housing construction. We find that (i)
higher sea level rise vulnerability is associated with significantly lower new housing
construction in areas with high climate change beliefs or concern, but that (ii) this
relationship is significantly attenuated in more skeptical areas. These results suggest a
significant role for climate change skepticism in market adaptation to sea level rise.

1 Introduction

Global sea levels are commonly projected to rise between 1 and 4 feet by the year 2100,

posing an existential threat to many coastal areas. In the United States, 3 feet of global

sea level rise (SLR) could inundate 13,000 square miles - an area larger than the state of

Maryland - and increase flood zone areas by almost 40% (Neumann et al., 2000). Rational

adaptation and relocation of economic activity have been shown to be critical for minimizing
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the potential costs of these changes (Desmet et al., 2018). While developers should theoret-

ically adjust housing investment in anticipation of future SLR if agents have homogeneous

rational beliefs (Bunten and Kahn, 2017), one salient threat to such anticipatory adaptation

is disagreement over climate risks (as also noted by Bunten and Kahn, 2017). Despite its

critical importance, the response of new housing construction to SLR risks and the role of

climate change beliefs in shaping this response remains an open empirical question. McCoy

and Zhang (2018) document that increased flood risk salience in New York after Hurricane

Sandy significantly decreased the probability of homeowner investments in existing flood

zone homes (e.g., kitchen remodeling, roof replacements) that had not been damaged by the

storm. They also find that this effect attenuates with distance to storm damages, consistent

with a key role of flood salience in shaping the response.1 We seek to build on these insights

by presenting an analysis that focuses both on new housing construction and considers a

broader geographical area that includes regions with significant climate change skepticism.

A nascent literature has already linked climate skepticism to limited price capitalization of

climate risks in existing coastal homes (Bernstein, Gustafson, Lewis, 2018) and agricultural

land (Severen, Costello, Deschenes, 2018). Bakkensen and Barrage (2018) also find evidence

of household sorting into high flood risk areas in part based on lower flood risk beliefs.2

Motivated by these findings, this paper thus presents what is to the best of our knowledge a

first broad empirical test of the association between new U.S. housing construction, sea level

rise risk, and climate change beliefs.

Our analysis combines data on new housing construction permits form the U.S. Census

Bureau with sea level rise inundation layers from the National Oceanic and Atmospheric

Administration (NOAA) and county-level climate change belief estimates from the Yale

Project on Climate Change Communication (Howe, Mildenberger, Maron, and Leiserowitz,

1 In a national analysis, Bernstein, Gustafson, and Lewis (2018) also initially find a weakly significant
negative association between housing upgrades and SLR exposure, but fail to detect a significant effect
once recently flooded properties are dropped from the sample.

2 Kahn and Zhao (2018) moreover present a theoretical framework to analyze the impacts of climate
change skeptics in a spatial equilibrium between two cities, finding that skeptics would be expected to
lower the price of land in the cooler city less impacted by climate change.
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2015). We further include controls for key determinants of housing supply identified by prior

studies, such as construction costs (using data from R.S. Means following Gyourko and Saiz,

2006) and local employment growth (using a shift-share instrumental predictor as in Quigley

and Raphael, 2005), inter alia. The analysis focuses on the U.S. Eastern seaboard and Gulf

Coast states during the post-crisis years of 2011-2016. The main results are twofold.

On the one hand, we find a significant negative association of sea level rise exposure and

new housing development, estimating that construction permits are −0.26% lower for every

1% increase in land at inundation risk. Of course this estimate cannot be interpreted as a

ceteris paribus effect and is likely a lower bound (in absolute value, that is, biased towards

zero) as SLR risk is positively correlated with both waterfront amenity values and flatter

topography, which would be expected to increase new housing development (Saiz, 2010), all

else equal. On the other hand, and perhaps more interestingly, we find that this relationship

is significantly attenuated by climate change skepticism. The estimated impact of SLR

exposure remains negative only in counties in the top quartile of belief that global warming

is happening, or, alternatively, in the bottom quartile of lack of concern about climate

change. These results are robust to controlling for potential confounders such as initial

land use regulations (Wharton Residential Land Use Index from from Gyourko, Saiz, and

Summers, 2008), FEMA flood zones, political preferences (Kahn, 2011), key demographics

such as incomes and education, and both state and state-by-year fixed effects that absorb

regional variation and shocks to housing construction over the relevant time period.

These results are important both for providing novel broad-scale empirical evidence sup-

porting theoretical predictions and assumptions on housing investment adaptation to sea

level rise, but also for adding to nascent empirical evidence that climate change skepticism

poses a genuine threat to such adaptation in many markets across the United States.

As a cross-sectional comparison, our analysis is inevitably subject to numerous caveats,

and ultimately provides only suggestive evidence of causal relationships. We are also un-

able to delineate the relative importance of several potential underlying mechanisms, in-
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cluding private builder beliefs, sorting, and local regulations. For example, North Carolina

(in)famously passed a law in 2012 restricting state agencies from considering sea level rise

projections in coastal planning decisions.3 While we incorporate a proxy for initial regulatory

stringency, we cannot distinguish the additional impact of new building codes and regula-

tions versus the role of builder beliefs. To the extent that such rules reflect local climate

change beliefs, however, our reduced-form estimates capture the combination of these impact

channels (similar in spirit to, e.g., Kahn’s (2011) estimates of the impacts of liberal politi-

cal ideology on housing supply). While many important questions remain, this paper thus

presents among the first empirical evidence on the association of new housing construction

with sea level rise risks and climate change beliefs.

The remainder of the paper proceeds as follows. Section 2 describes the data, Section 3

presents the empirical analysis and results, and Section 4 concludes.

2 Data

Following prior studies on housing supply (e.g., Glaeser, Gyourko, and Saiz, 2008), we col-

lect new construction permit data from the U.S. Census to measure (gross) housing invest-

ment. Our analysis focuses on the county-year level for coastal states along the U.S. Eastern

seaboard and the Gulf of Mexico. Both Pennsylvania and the District of Colombia are also

considered as they feature areas that are vulnerable to sea level rise. Our main analysis

focuses on cumulative construction of single family homes in each county between 2011 and

2016. We also consider annual and total (i.e., including multi-unit) permit issuance for com-

parison. Next, we collect standard explanatory variables for housing supply. First, we derive

construction cost estimates using R.S. Means’ square foot cost model, following Gyourko and

Saiz (2006). We use the model to compute the construction cost of a representative Ameri-

3 H.B. 819, see, e.g., Schwartz and Fausset, New York Times, September 12, 2018 ("North Carolina,
Warned of Rising Seas, Chose to Favor Development").
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can home - with characteristics4 chosen to match median values in the 2011-2015 American

Housing Survey - in the second quarter of 2018 for all available cities in our sample states. In

order to compute changes in construction costs over time, we match each city to the closest

larger city for which R.S. Means provides a historical construction cost index. Finally, each

county is matched to the nearest city within its state with R.S. Means data.5

Next, we collect socio-economic controls from the Bureau of Labor Statistics and the U.S.

Census. These include employment by county and industry (3-digit NAICS, 2011-2016) data

which we use to construct a shift-share instrument for predicted county-level employment

growth, following Quigley and Raphael (2005), and also, e.g., Osei and Winters (2018).

Specifically, we combine each county’s initial (year 2011) employment shares by industry

with national employment growth rates by industry from 2011-2016 to construct a shift-share

instrumental predictor of each county’s employment growth over this time period. Further

demographic controls include county populations, age, and education information from the

American Community Survey (2012-2016), and annual median household income from the

Small Area Income and Poverty Estimates. As additional control variables, we collect maps

of special flood hazard areas (as of June 2018) from FEMA, President Trump’s 2016 county-

level vote shares from Dave Leip’s Atlas of U.S. Presidential Elections, and ease-of-building

information from the Wharton Residential Land Use Regulation Index (WRLURI), available

for the year 2008 at the municipality level from Gyourko, Saiz, and Summers (2008).6

We combine these data with geo-spatial sea level rise inundation layers from the National

Oceanic and Atmospheric Administration (NOAA). As sea level rise vulnerability measure,

we compute the percentage of each county’s land area projected to be inundated at two or six

feet of SLR, respectively. Finally, we obtain county-level estimates of climate change beliefs

4 Our representative house features two stories, 1500 square feet area, two full bathrooms, a one-car
attached garage, "average" building quality, and default model values for the other variables.

5 We exclude four island and peninsular counties for which nearest city construction costs are only avail-
able from inland locations that are likely to be poor proxies for on-island costs, namely Dukes County,
MA; Nantucket County, MA; Accomack County, VA, and Northampton County, VA.

6 We assign each county in our data containing a municipality with WRLURI data that municipality’s
index. If a county contains more than one municipality with WRLURI data, a simple average was used.
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(for 2013) from Howe, Mildenberger, Maron, and Leiserowitz (2015) from the Yale Project on

Climate Change Communication. In order to maintain comparability across studied counties,

our preferred sample focuses only on coastal and adjacent counties with SLR vulnerability

(defined by positive inundation at six feet). However, we also conduct estimates for all

counties in coastal and adjacent vulnerable (Pennsylvania, DC) areas. Table 1 presents key

summary statistics.

3 Analysis

Our first specification analyzes cumulative housting stock additions in each vulnerable county

j between 2011-2016, lnQj, echoing literature specifications such as GGS (2008):

lnQj = β0+∆ lnX′jγ+X′j,2011λ+β1(SLRj)+β2(Beliefsj)+β3(SLRj ·Beliefsj)+εj (1)

Here, ∆ lnXj is a vector of the growth rates (changes in the natural logarithm of control

variables between 2011 and 2016), and X′j,2011 represents initial or general levels of relevant

controls, including state fixed effects for some specifications. In order to avoid overcontrolling

the regression, our preferred specification does not include population growth from 2011-2016

in ∆ lnXj due to the endogeneity of migration to vulnerable areas as a potential response

margin. However, we confirm that the results are robust to including population growth

controls, as shown in Appendix Table A1. Similarly, we control directly for demand shifters

such as the employment growth instrument in (1) instead of including prices and estimating

a more structural supply model (as in, e.g., Mayer and Somerville, 2000). Our approach is

thus more in line with, e.g., Kahn (2011) in adopting a reduced form approach to analyzing

the key association of interest, namely how cumulative housing investment varies with sea

level rise exposure SLRj, climate beliefs Beliefsj, and their interaction.
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Table 1: Summary Statistics
Mean Std.Dev. Median Min Max N

Coastal and Vulnerable Adj. Counties

#Permits, 2011-16, Single-Family 3,024 6,524 1,189 0 93,408 298

#Permits, 2011-16, All 3,160 6,704 1,262 0 95,961 298

Annual #Permits, Single-Family 504 1,114 187 0 18,533 1,788

% Inundated at 6ft SLR (SLR6ft) 17.8 21.5 10.6 0.0002 98.2 298

% Inundated at 2ft SLR (SLR2ft) 13.3 17.2 7.4 0 92.2 298

Population, 2011 (’1000s) 267.1 454.1 97.2 4.3 4,180 298

gPopulation, 2011-2016 2.6 4.8 1.8 -7.2 18.2 298

Construction Costs ($/sqft), 2011 98.3 16.0 92.9 79.1 153.1 294

gConstr.Costs (%), 2011-16 13.0 3.9 11.8 5.2 22.8 294

Med. HH. Income ($1000), 2011 50.5 15.6 46.2 26.3 105.4 298

gMed.HH.Inc (%), 2011-16 11.4 5.3 11.4 -4.7 27.0 298

Shift-Share ̂gEmployment (%), 2011-16 9.4 1.7 9.6 -2.9 14.6 298

Land Area (sq.miles) 563 412 491 7.5 3,397 298

FEMA Flood Zone (% of area), 2018 24.4 21.3 17.2 0.0001 99.5 298

WRLURI, 2008 0.22 0.96 .17 -2.15 4.10 162

Trump Vote Share, 2016 (%) 51.8 16.5 54.0 4.1 88.4 298

% Bachelor’s 16.0 6.1 15.7 4.3 34.5 298

Median Age 40.6 5.3 40.1 24.4 57.7 298

% Over 62 Years 20.6 5.7 19.2 9.4 42.8 298

Unemployment (%), Annual 7.2 2.3 6.8 2.6 18.8 1,788

Climate Beliefs:

% "Not Worried" 43.8 7.0 44.6 24.9 59.2 298

% "No Harm to US" 33.0 5.7 33.3 16.9 45.2 298

% "Not Happening" 12.7 3.9 12.5 4.2 23.8 298

% "Happening" 68.5 5.9 68.7 54.7 83.6 298

All Counties in Coastal States & PA, DC

#Permits, 2011-16, Single-Family 1,793 4,954 306 0 93,408 1,067

% "Not Worried" 46.8 6.6 47.3 24.9 59.3 1,067

Population, 2011 (’1000s) 129.0 291.3 37.67 1.5 4,180 1,067

Med. HH. Income ($1000), 2011 43.5 13.4 40.3 21.0 119.5 1,067

Land Area (sq.miles) 647 514 567 2 6,671 1,067

We first estimate (1) without the SLRj and Beliefsj variables, with results presented

in Table 2 Column 1. Figure 1 depicts the resulting residuals (z-axis) against each county’s

sea level rise exposure (x-axis) and the estimated fraction of households "not worried" about

climate change (y-axis). The analogous figure using disbelief that climate change is happening

instead looks very similar and is shown in the Appendix (Figure A1). Several points stand
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out. First, the strong negative residual at 40% exposure and high worry is New York County,

New York. We ensure that this observation is not solely driving our findings by also showing

results excluding New York State (Column 4). Second, at various slices of SLR risk, it

appears that the residuals are higher, the higher the estimated percentage of unconcerned

households. Figure 2 below showcases this pattern by plotting residuals against beliefs

separately for "Low" (below-median) and "High" (above-median) SLR exposed counties.

While housing investment residuals appear unrelated to climate beliefs in areas with low

SLR exposure, in high risk areas, we find a positive relationship between new construction

residuals and lack of concern about climate change. Third, it is interesting to note that the

counties with the highest SLR exposure paradoxically feature only high percentages of lack of

climate change concern. This correlation was previously noted by Bernstein, Gustafson, and

Lewis (2018), and aligns with the finding of Bakkensen and Barrage (2018) that households

sort into high-risk areas based on lower flood risk beliefs.

Figure 1
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Figure 2

Table 2 presents results for (1) with the estimated percentage "Not worried" as Beliefsj in-

dicator. Column 2 presents benchmark estimates, Column 3 adds state fixed effects, Column

4 excludes New York, and Column 5 weights observations by initial population.

All specifications show a significant negative association between SLR exposure and new

housing construction, but a significant positive interaction between SLR exposure and a lack

of climate change concerns. That is, high risk counties appear to invest relatively more in

new housing stock, the less concerned their populations are about climate change. While a

hypothetical county with 100% concern about climate change is estimated to have −0.26%

less new housing construction for every 1% increase in sea level rise exposure, this response

is significantly attenuated by the presence of unconcerned households, ceasing to be negative

in estimate once their population share reaches 35%. Given the correlation of SLR exposure

with known positive drivers of housing development (e.g., topography, amenity value), it is

important to note that a positive level estimate of the association between SLR and housing

development in our setup could theoretically still be consistent with a true negative ceteris

paribus effect. However, the fact that we find systematic changes in this association due

to variation in climate change beliefs is strongly suggestive of the mechanism that climate

skepticism is attenuating the housing investment response to SLR (as beliefs should be
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orthogonal to topography, and any association of beliefs with amenity valuations via income

or state-level unobservables are controlled for in the regression, with further controls for

basic demographics added below).

To provide a different perspective on the data, Table 3 presents the same results as Table

2 but using quartile dummies for belief that climate change "is happening" q"Is Happening"n ,

n ∈ {1, 2, 3, 4} as Beliefsj measures. We set q"Is Happening"1 as omitted category so that the

basic coeffi cient on SLR now measures the estimated impact for counties in the bottom

quartile of belief in climate change (i.e., the most skeptical quartile). Once again, the data

reveal that the association between SLR exposure and new housing is positive in the most

climate skeptical areas (+0.146%), but decreases progressively to (+0.0782) in the second

quartile, (+0.038) in the third quartile, and finally becoming negative (-0.004) in the top

quartile of belief that climate change is happening.

We now examine the robustness of these results. First, Table 4 considers alternative

sample cuts. In order to allow non-linear effects whilst including counties with zero sea level

rise exposure, this table presents a quadratic (rather than a logarithmic) specification in SLR.

Column (1) shows results for the benchmark sample in this specification, which again yield a

negative and significant coeffi cient on SLR in a hypothetical county with 100% concern about

climate change, but a positive and significant interaction between lack of concern and SLR

exposure. Column (2) restricts the analysis to coastal counties only. The sample size drops

by almost half, and the main coeffi cients of interest cease to be precisely estimated. We note,

however, that using disbelief that climate change is happening as Beliefsj measure again

yields a marginally significant positive interaction even in this smaller sample (see Table

A4). Columns (3) and (4) expand the sample to include all counties in coastal states, plus

Pennsylvania and Washington DC, with and without state fixed effects. The results again

show the same pattern as in the benchmark, suggesting a negative baseline association of

sea level rise exposure and new housing investment, but that this relationship is attenuated

by lack of concern about climate change.
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The Appendix presents the following additional robustness checks. First, Table A1 adds

controls for population growth 2011-2016, the 2016 Trump vote share, the Wharton Residen-

tial Land Use Regulation Index, the share of each county currently in a FEMA special flood

hazard area, and select demographics (median age and percentages over 62 years old and

with a bachelor’s degree, respectively). All specifications continue to show a positive and

significant interaction between SLR and %NotWorried. Next, Table A2 presents results for

all new housing unit permits, including those from multi-family homes. Given the findings

of Bernstein, Gustafson, and Lewis (2018) that SLR risk appears to be capitalized (only)

in the non-owner occupied housing segment regardless of local climate change beliefs, one

might expect the results to be attenuated when including multi-unit buildings in the sample.

Indeed, we find that the estimated coeffi cients are smaller, but still positive and precisely

estimated. Table A3 uses an alternative SLR vulnerability measure based on inundation

exposure at two feet. Given that SLR6ft and SLR2ft are highly correlated, the results are

qualitatively similar. Finally, Table A4 showcases additional results for alternative climate

belief measures, including the estimated percentage who believe that "global warming will

harm people in the US not at all/only a little" and who "do not think that global warming

is happening." Both measures yield the same core results as the benchmark.

Our second specification (2) uses the panel nature of the data to accounts for annual

co-variation between new construction with other explanatory variables X′j,t, including year

fixed effects δt or year-by-state fixed effects (δt · γs) that flexibly control for aggregate and

regional shocks and trends (such as differential recession recovery patterns across state-years).

lnQj,t = β0+γs+δt(·γs)+lnX′j,tλ+β1(lnSLRj)+β2(Skepticalj)+β3(SLRj ·Skepticalj)+εj,t

(2)

Standard errors εj,t are now clustered at the county level to allow for correlated shocks within

counties. Table 5 presents the results, which again suggest a significant negative elasticity

of new housing construction with respect to SLR vulnerability around −0.25 in a hypo-
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thetical county with 100% climate change concern, but that this relationship is significantly

dampened by lower levels of climate change worry observed in many counties.

Table 2: Benchmark Results: Climate Worry
Dependent Variable: New Single Family Housing Units lnQ2011−16

(1) (2) (3) (4) (5)

lnPop2011 0.872*** 0.906*** 0.928*** 0.973*** 0.900***

(0.0458) (0.0473) (0.0480) (0.0391) (0.0502)
̂gEmpl.‘11−16 8.991*** 8.956*** 8.401*** 10.83*** 8.701***

(2.703) (2.596) (2.806) (2.433) (2.787)

gConstr.Costs‘11−16 -5.949*** -4.203*** -3.267 -1.993 -4.217***

(1.368) (1.408) (3.136) (1.304) (1.435)

lnConstr.Costs2011 -5.180*** -4.220*** -4.435*** -2.823*** -4.270***

(0.613) (0.652) (1.706) (0.514) (0.662)

gMed.Inc.‘11−16 0.801 0.577 0.295 1.143 0.463

(1.008) (0.913) (0.832) (0.883) (0.907)

lnMed.Inc.2011 2.116*** 1.769*** 1.770*** 1.406*** 1.762***

(0.269) (0.274) (0.274) (0.196) (0.292)

lnArea 0.377*** 0.353*** 0.361*** 0.246*** 0.370***

(0.0711) (0.0784) (0.0848) (0.0655) (0.0825)

lnSLR6ft -0.290** -0.261** -0.154* -0.304**

(0.122) (0.102) (0.0860) (0.130)

%NotWorried 0.00968 0.0163 0.0178* 0.0111

(0.0103) (0.0104) (0.00916) (0.0106)

%NotWorried·lnSLR6ft 0.00827*** 0.00742*** 0.00544*** 0.00854***

(0.00268) (0.00219) (0.00192) (0.00285)

Observations 293 293 293 276 293

Adj. R-squared 0.775 0.804 0.830 0.851 0.795

Specification: State F.E. Exclude NY Pop. Weights

Table presents OLS regression results of natural log of sum of single family housing unit permits issued in county

j from 2011-16 on indicated control variables plus a constant. The sample is coastal and adjacent counties along

the U.S. Eastern seaboard and Gulf Coast with non-zero land inundation risk from 6 feet of sea level rise. Col. (3)

adds state fixed effects, Col. (4) excludes all New York state counties, and Col. (5) weights observations by

year 2011 county populations. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Benchmark Results: Climate Change Belief
Dependent Variable: New Single Family Housing Units lnQ2011−16

(1) (2) (3) (4) (5)

lnPop2011 0.872*** 0.880*** 0.888*** 0.959*** 0.865***

(0.0458) (0.0498) (0.0502) (0.0373) (0.0535)
̂gEmpl.11−16 8.991*** 9.364*** 9.148*** 11.15*** 9.077***

(2.703) (2.649) (2.880) (2.337) (2.837)

gConstr.Costs‘11−16 -5.949*** -4.988*** -2.617 -2.579** -5.048***

(1.368) (1.429) (3.079) (1.251) (1.472)

lnConstr.Costs2011 -5.180*** -4.599*** -5.019*** -3.084*** -4.674***

(0.613) (0.674) (1.703) (0.491) (0.680)

gMed.Inc.11−16 0.801 0.483 0.314 1.084 0.416

(1.008) (0.889) (0.830) (0.864) (0.886)

lnMed.Inc.2011 2.116*** 1.893*** 2.039*** 1.487*** 1.902***

(0.269) (0.286) (0.270) (0.198) (0.303)

lnArea 0.377*** 0.378*** 0.368*** 0.246*** 0.403***

(0.0711) (0.0816) (0.0863) (0.0621) (0.0874)

Coastal County (=1) 0.0804 0.0649 0.197** 0.0567

(0.108) (0.117) (0.0966) (0.111)

lnSLR6ft 0.146*** 0.124*** 0.130*** 0.149***

(0.0336) (0.0250) (0.0335) (0.0343)

q"Is Happening"2 ·lnSLR6ft -0.0678* -0.0426 -0.0607 -0.0671

(0.0401) (0.0369) (0.0404) (0.0409)

q"Is Happening"3 ·lnSLR6ft -0.108*** -0.0897*** -0.108*** -0.110***

(0.0381) (0.0324) (0.0384) (0.0395)

q"Is Happening"4 ·lnSLR6ft -0.150*** -0.120*** -0.109*** -0.153***

(0.0509) (0.0418) (0.0409) (0.0520)

q"Is Happening"2 0.243* 0.197 0.130 0.252*

(0.144) (0.152) (0.135) (0.146)

q"Is Happening"3 0.411*** 0.363** 0.227 0.433***

(0.158) (0.156) (0.141) (0.164)

q"Is Happening"4 0.0291 -0.0164 -0.249 0.0545

(0.206) (0.194) (0.169) (0.214)

Observations 293 293 293 276 293

Adj. R-squared 0.775 0.807 0.830 0.858 0.797

Specification: State F.E. Exclude NY Pop. Weights

Table presents OLS regression results of natural log of sum of single family housing unit permits issued in county

j from 2011-16 on indicated control variables plus a constant. The sample is coastal and adjacent counties along

the U.S. Eastern seaboard and Gulf Coast with non-zero land inundation risk from 6 feet of sea level rise. Col. (3)

adds state fixed effects, Col. (4) excludes all New York state counties, and Col. (5) weights observations by

year 2011 county populations. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Alternative Sample Cuts
Dependent Variable: New Single Family Housing Units lnQ2011−16

(1) (2) (3) (4)

lnPop2011 0.914*** 0.853*** 1.188*** 1.135***

(0.0475) (0.0633) (0.0321) (0.0317)
̂gEmpl.‘11−16 9.212*** 8.618*** 6.913*** 3.870***

(2.640) (3.295) (1.474) (1.316)

gCosts‘11−16 -4.514*** -2.658 1.247 -1.050

(1.447) (1.856) (0.966) (2.015)

lnCosts2011 -4.164*** -3.869*** -3.512*** -5.615***

(0.626) (0.804) (0.446) (1.007)

gMed.Inc.‘11−16 0.393 -0.555 1.331** 1.764***

(0.925) (1.104) (0.590) (0.526)

lnMed.Inc.2011 1.768*** 1.768*** 2.197*** 2.481***

(0.260) (0.363) (0.157) (0.171)

lnArea 0.333*** 0.459*** 0.0235 0.214***

(0.0733) (0.106) (0.0369) (0.0377)

SLR6ft -0.158*** -0.0920 -0.343*** -0.257***

(0.0559) (0.0813) (0.0577) (0.0495)

(SLR6ft)2 0.00187*** 0.00117 0.00435*** 0.00322***

(0.000626) (0.000823) (0.000736) (0.000635)

%NotWorried -0.0148 0.0108 -0.0193*** -0.0239***

(0.0157) (0.0289) (0.00641) (0.00637)

%NotWorried·SLR6ft 0.00405*** 0.00224 0.00809*** 0.00605***

(0.00121) (0.00181) (0.00123) (0.00105)

%NotWorried·(SLR6ft)2 -4.72e-05*** -2.87e-05 -9.99e-05*** -7.48e-05***

(1.33e-05) (1.80e-05) (1.56e-05) (1.34e-05)

Observations 293 174 1,036 1,036

Adj. R-squared 0.802 0.778 0.764 0.815

Sample Coastal & Adj. Only Coastal All in Coastal All in Coastal

Counties Counties States & PA,DC States & PA,DC

State Fixed Effects: X
Table presents OLS regression results of natural log of sum of single family housing unit permits

issued in county j from 2011-16 on indicated control variables plus a constant. The samples are

coastal and adjacent vulnerable (to 6 feet of SLR) counties along the Eastern U.S. seaboard

and Gulf Coast in Col. (1), only coastal counties on Col. (2), and all counties in coastal states plus PA

and DC which have SLR vulnerable areas in Cols. (3)-(4). Column (4) adds state fixed effects.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Panel Analysis
Dep. Var.: New Single Family Housing Units lnQj,t

(1) (2) (3)

lnPopulationj,t 0.892*** 0.960*** 0.963***

(0.0406) (0.0453) (0.0463)

lnConstr.Costj,t -4.884*** -3.785*** -4.167***

(1.365) (1.310) (1.544)

lnMed.HH.Incomej,t 2.243*** 1.679*** 1.767***

(0.253) (0.271) (0.295)

%Unemployedj,t 0.00174 -0.00443 0.0131

(0.0327) (0.0293) (0.0364)

lnAreaj 0.373*** 0.355*** 0.351***

(0.0824) (0.0861) (0.0880)

lnSLR6ftj -0.253** -0.248**

(0.104) (0.106)

%NotWorriedj 0.0225** 0.0223**

(0.0105) (0.0108)

%NotWorriedj·lnSLR6ftj 0.00715*** 0.00704***

(0.00223) (0.00228)

Observations 1,745 1,745 1,745

Adj. R-squared 0.783 0.807 0.800

#Clusters (County) 293 293 293

State F.E. X X
Year F.E. X X
State*Year F.E. X
Table presents OLS regression results of natural log of number of single

family housing unit permits issued in county j in year t on the indicated

control variables, a constant, plus state and year fixed effects (Cols. 1-2)

or state-by-year fixed effects (Col. 3). The sample is coastal and adjacent

counties along the U.S. Eastern seaboard and Gulf Coast with non-zero land

inundation risk from 6 feet sea level rise. Standard errors are heteroskedasticity

robust and clustered at the county level. *** p<0.01, ** p<0.05, * p<0.1.

4 Conclusion

Verbal expressions of climate change skepticism abound in the United States public sphere,

ranging from households’survey responses to snowball demonstrations in Congress7 and re-

ported bans of the term "climate change" among, e.g., Florida Department of Environmental

7 In 2015, Senator Jim Inhofe brought a snowball on to the Senate floor in an effort to argue against
climate science (see, e.g., February 26th 2015 Washington Post article "Jim Inhofe’s snowball has
disproven climate change once and for all" by Philip Bump).
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Protection employees.8 Whether these stated preferences serve as predictors of agent behav-

ior remains an open question. For example, President Donald Trump has been widely noted

for denouncing climate change as a "hoax" while working to build a sea wall to protect one

of his golf resorts from its effects.9 This question of stated versus revealed preferences is

critically important for our understanding and modeling of the economic impacts of climate

change. With rational foresight, adaptive investment and relocation of economic activity

can decrease the costs of sea level rise by orders of magnitude (Desmet et al., 2018). With

heterogeneity in beliefs, however, prices may not reflect future risks (Bernstein, Gustafson,

and Lewis, 2018; Bakkensen and Barrage, 2018), thus potentially hampering market incen-

tives for effi cient adaptation. This paper presents what is to the best of our knowledge a

first broad empirical test of whether new U.S. housing investment appears to respond to

sea level rise vulnerability, and how this response is shaped by local climate change beliefs.

We combine U.S. Census data on construction permits with NOAA sea level rise inundation

layers and climate belief estimates from Howe et al. (2015) in order to analyze this issue em-

pirically. Focusing on the Eastern U.S. seaboard and Gulf Coast areas during the post-crisis

years of 2011-2016, we find a significant negative association of sea level rise vulnerability

and new housing construction, but only for areas with the highest levels of climate change

beliefs or concern. For areas with more skepticism, we find a robustly significant positive

interaction between lack of belief and sea level rise vulnerability. These results highlight the

real potential of climate change skepticism to undermine effi cient housing market adaptation

to sea level rise in many markets across the United States.

8 See, e.g., Miami Herald’s March 8th 2015 article "In Florida, offi cials ban term ’climate change’" by
Tristam Korten.

9 See, e.g., Politico’s May 23rd 2016 article "Trump acknowledges climate change – at his golf course"
by Ben Schreckinger.
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Table A2: All New Housing Units

Dependent Variable: All New Housing Units ln Q̃2011−16
(1) (2) (3) (4) (5)

lnPop2011 0.930*** 0.969*** 0.975*** 0.928*** 0.987***

(0.0384) (0.0380) (0.0425) (0.0474) (0.0383)

ĝEmp‘11−16 9.993*** 9.784*** 8.994*** 8.893*** 10.55***

(2.508) (2.328) (2.460) (2.577) (2.399)

gCosts‘11−16 -4.538*** -2.752** -1.354 -0.588 -1.655

(1.275) (1.248) (2.834) (1.560) (1.285)

lnCosts2011 -4.100*** -3.158*** -1.716 -2.616*** -2.560***

(0.406) (0.457) (1.246) (0.592) (0.493)

gMed.Inc.‘11−16 1.464* 1.216 0.844 1.027 1.399

(0.788) (0.849) (0.803) (0.913) (0.865)

lnMed.Inc.2011 1.665*** 1.345*** 1.351*** 1.210*** 1.326***

(0.178) (0.178) (0.200) (0.208) (0.194)

lnArea 0.274*** 0.249*** 0.257*** 0.288*** 0.226***

(0.0454) (0.0615) (0.0714) (0.0721) (0.0646)

lnSLR6ft -0.203** -0.197** 0.307 -0.136*

(0.0899) (0.0800) (0.405) (0.0814)

%NotWorried 0.0138 0.0194** 0.0580* 0.0163*

(0.00908) (0.00945) (0.0320) (0.00901)

%NotWorried·lnSLR6ft 0.00644*** 0.00608*** -0.00705 0.00504***

(0.00203) (0.00172) (0.00959) (0.00183)

Observations 293 293 293 174 276

Adj. R-squared 0.815 0.845 0.862 0.833 0.857

Sample: Coastal & Adj. Coastal & Adj. Coastal & Adj. Only Coastal Exclude

Counties Counties Counties Counties New York

State F.E.: X
Table presents OLS regression results of natural log of sum of all housing unit permits issued in county

j from 2011-2016 on indicated control variables plus a constant. The sample in Cols. (1)-(3) is coastal

and adjacent counties along the U.S. Eastern seaboard and Gulf Coast with non-zero land inundation risk

from 6 feet of sea level rise. Col. (3) adds state fixed effects. Col. (4) restricts sample to coastal counties.

Col. (5) excludes New York state. Robust S.E.s in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: 2-Feet Sea Level Rise
Dependent Variable: New Single Family Housing Units lnQ2011−16

(1) (2) (3) (4)

lnPop2011 0.867*** 0.907*** 0.927*** 0.973***

(0.0462) (0.0475) (0.0485) (0.0397)

ĝEmp‘11−16 (shift-share) 8.923*** 8.534*** 8.049*** 10.47***

(2.748) (2.666) (2.869) (2.492)

gCosts‘11−16 -6.100*** -4.195*** -3.588 -2.015

(1.372) (1.400) (3.150) (1.308)

lnCosts2011 -5.181*** -4.237*** -4.434*** -2.853***

(0.615) (0.647) (1.702) (0.515)

gMed.Inc.‘11−16 0.826 0.452 0.190 1.074

(1.029) (0.930) (0.850) (0.904)

lnMed.Inc.2011 2.083*** 1.766*** 1.773*** 1.417***

(0.271) (0.271) (0.274) (0.197)

lnArea 0.379*** 0.354*** 0.364*** 0.248***

(0.0711) (0.0787) (0.0857) (0.0666)

lnSLR2ft -0.283** -0.235** -0.0983

(0.137) (0.109) (0.0901)

%NotWorried 0.0127 0.0196* 0.0209**

(0.0108) (0.0108) (0.00972)

%NotWorried·lnSLR2ft 0.00813*** 0.00687*** 0.00424**

(0.00304) (0.00236) (0.00208)

Observations 289 289 289 272

Adj. R-squared 0.772 0.799 0.826 0.847

State Fixed Effects: X
Exclude New York: X
Table presents OLS regression results of natural log of sum of single family housing

permits issued in county j from 2011-2016 on indicated control variables plus a constant.

The sample is coastal and adjacent counties along the U.S. Eastern seaboard and Gulf

Coast with non-zero land inundation risk from 2 feet of sea level rise. Column (4) excludes

New York state. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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ti
m
at
ed
p
er
ce
nt
ag
es
"n
ot
ve
ry
/n
ot
at
al
l
w
or
ri
ed
ab
ou
t
gl
ob
al
w
ar
m
in
g"
in
C
ol
.
(1
),
"w
h
o
th
in
k
gl
ob
al
w
ar
m
in
g
w
il
l
h
ar
m
p
eo
p
le
in
th
e
U
S
n
ot
at
al
l/
on
ly

a
li
tt
le
"
in
C
ol
.
(2
),
an
d
"w
h
o
d
o
n
ot
th
in
k
th
at
gl
ob
al
w
ar
m
in
g
is
h
ap
p
en
in
g"
in
C
ol
s.
(3
)-
(6
).
R
ob
u
st
S
.E
.s
in
p
ar
en
th
es
es
.
**
*
p
<
0.
01
,
**
p
<
0.
05
,
*
p
<
0.
1.
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